Skip to main content

Glioma clinical trials at UC Davis

9 research studies open to eligible people

Showing trials for
  • A Study of Ensartinib in Treating Cancer with Genomic Alterations in Kids

    “Volunteer for research and contribute to discoveries that may improve health care for you, your family, and your community!”

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or do not respond to treatment (refractory) and have spread to other places in the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

    Sacramento, California and other locations

  • A Study of Lidocaine Levels During Surgery for the Removal of Glioblastoma Cancer

    open to eligible people ages 18 years and up

    This clinical trial measures the amount and effect of lidocaine injected into patients with glioblastoma while they are undergoing surgical removal of their brain tumors. Lidocaine is a substance used to relieve pain by blocking signals at the nerve endings in skin. Information gained from this study may help researchers come up with new treatments to help patients with glioblastomas in the future.

    Sacramento, California

  • A Study of the Effectiveness and Safety of Experimental Pembrolizumab Plus Lenvatinib for Selected Solid Tumors

    open to eligible people ages 18 years and up

    The purpose of this study is to determine the safety and efficacy of combination therapy with pembrolizumab (MK-3475) and lenvatinib (E7080/MK-7902) in participants with triple negative breast cancer (TNBC), ovarian cancer, gastric cancer, colorectal cancer (CRC), glioblastoma (GBM), biliary tract cancers (BTC), or pancreatic cancer.

    Sacramento, California and other locations

  • Experimental Combination of Dabrafenib and Trametinib After Radiation For High-Grade Glioma (brain/nervous system cancer)

    open to eligible people ages 3-25

    This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.

    Sacramento, California and other locations

  • Experimental Erdafitinib for Relapsed/Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorder

    open to eligible people ages 12 months to 21 years

    This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

    Oakland, California and other locations

  • Genetic Testing to Determine Therapy For Pediatric Relapsed or Refractory Advanced Solid Tumors

    open to eligible people ages 12 months to 21 years

    This Pediatric MATCH screening and multi-sub-study phase II trial studies how well treatment that is directed by genetic testing works in pediatric patients with solid tumors, non-Hodgkin lymphomas, or histiocytic disorders that have progressed following at least one line of standard systemic therapy and/or for which no standard treatment exists that has been shown to prolong survival. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic changes or abnormalities (mutations) may benefit more from treatment which targets their tumor's particular genetic mutation, and may help doctors plan better treatment for patients with solid tumors or non-Hodgkin lymphomas.

    Sacramento, California and other locations

  • Measuring enzymes (protein molecules) (Cytochrome C Oxidase Activity) in newly diagnosed brain cancer

    “Can the amount of enzymes in brain cancer (glioblastoma multiform) help predict overall survival and disease progression?”

    open to eligible people ages 21 years and up

    This is a multi-institutional, consortium-based, non-interventional prospective blinded endpoints clinical study to determine whether high activity of Cytochrome C Oxidase (CcO) in tumor specimens from subjects with newly diagnosed primary GBM is associated with shortened OS (primary outcome) and PFS (secondary outcome) times.

    Sacramento, California and other locations

  • Targeted therapy directed by genetic testing in treating patients with advanced solid tumors, lymphomas, or multiple myeloma

    “Will identifying genetic abnormalities in tumor cells help doctors plan better, more personalized treatment for cancer patients?”

    open to eligible people ages 18 years and up

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.

    Sacramento, California and other locations

  • Testing the Use of the Immunotherapy Drugs Ipilimumab and Nivolumab Plus Radiation Therapy in Glioblastoma (Brain Tumor)

    open to eligible people ages 18 years and up

    This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.

    Sacramento, California and other locations

Last updated: