Skip to main content

Schizophrenia clinical trials at UC Davis

3 research studies open to eligible people

Showing trials for
  • Brain Stimulation on Higher-Order Cognition

    open to eligible people ages 18-50

    The purpose of this study is to better understand the neural correlates of higher-order cognition, both in the healthy brain and in schizophrenia, and to determine how these mechanisms are modulated by transcranial direct current stimulation (tDCS) at frontal and occipital scalp sites. Testing the effects of tDCS at these scalp sites on cognitive task performance will help us understand the roles of the brain regions corresponding to these sites during higher-order cognitive processing (language comprehension, cognitive control, and related attention and memory processes). Behavioral and electrophysiological (EEG) measures will be used to assess cognitive performance. The investigator's overarching hypothesis is that stimulating prefrontal circuits with tDCS can improve cognitive control performance, and ultimately performance on a range of cognitive tasks, as compared to stimulating a different cortical region (occipital cortex) or using sham stimulation. This study is solely intended as basic research in order to understand brain function in healthy individuals and individuals with schizophrenia. This study is not intended to diagnose, cure or treat schizophrenia or any other disease.

    Sacramento, California

  • Brain Stimulation on Cognition, Oscillations and GABA Levels in Schizophrenia

    “Volunteer for paid research and contribute to discoveries that may improve health care for you, your family, and your community!”

    open to eligible people ages 18-47

    People with schizophrenia often have problems with attention, learning and memory and other cognitive abilities that interfere with their work and school performance. Unfortunately, even our best treatments often do not significantly reduce these cognitive problems. The current study investigates whether or not delivering a very small electrical current to people's foreheads (called, transcranial direct current stimulation; (tDCS)) might improve functioning in the front part of the brain and reduce these cognitive problems in people with schizophrenia. tDCS is non-invasive and has been shown to improve cognitive functioning in some preliminary studies. The current study will investigate whether giving tDCS during a task is more effective than giving it during rest (Aim 1), whether delivery of tDCS to the front of the head is more effective than delivery to the back of the head (Aim 2), and whether tDCS delivery will alter levels of a major inhibitory neurotransmitter in the brain (GABA; Aim 3) that is important to cognitive functioning and may be disrupted in people with schizophrenia. Although this study is not intended to diagnose, cure or treat schizophrenia or any other disease, if results are positive it will encourage future large-scale studies to determine if tDCS can become an effective treatment for cognitive problems in people with schizophrenia.

    Sacramento, California

  • tDCS on the Neuronal Mechanisms of Cognitive Control in Schizophrenia

    “Help us develop new treatments for patients who have difficulty with brain functions such as reasoning, including schizophrenic patients”

    open to eligible people ages 18-35

    The purpose of this study is to better understand the neural correlates of cognitive control (CC) deficits in schizophrenia and determine how these mechanisms can be modulated by transcranial direct current stimulation (tDCS). CC is a critical neurocognitive process that is required for flexible, directed thought and action based on goals and intentions. Identifying and developing paradigms to improve CC is therefore a mental health priority. Current theories of CC postulate that recruitment of the dorsolateral prefrontal cortex (DLPFC) is essential for this process by maintaining high-level information that it can then use to orchestrate patterns of activation in other brain networks to support optimal performance. tDCS is a safe, noninvasive method of modulating regional brain excitability via brief (15-20 m) application of a weak (1-2 mA) current. The goal of the proposed experiments is to combine tDCS with functional magnetic resonance imaging (fMRI) to test the hypotheses that 1) acute tDCS over the DLPFC can improve performance during a CC task (the dot pattern expectancy (DPX) variant of the AX-Continuous Performance Task) in schizophrenia patients and healthy control subjects, and 2) acute tDCS over the DLPFC can increase recruitment of the DLPFC during the DPX. Effects of tDCS on brain functional connectivity (during CC as well as during the resting state) will also be examined, as well as effects on an episodic memory task. The current study will be the first to use functional magnetic resonance imaging (fMRI) to examine the effects of tDCS on the neuronal mechanisms of CC in schizophrenia, and has potentially important implications for therapeutic development for this treatment refractory yet disabling aspect of the illness.

    Sacramento, California

Last updated: